
SIRIUS: HARVESTING WHOLE-PROGRAM OPTIMIZATION OPPORTUNITIES
FOR DNNS

Yijin Li * 1 2 Jiacheng Zhao * 1 2 3 Qianqi Sun 1 2 Haohui Mai 4 Lei Chen 1 2 Wanlu Cao 1 2 Yanfan Chen 1 2

Zhicheng Li 1 2 Ying Liu 1 3 Xinyuan Zhang 1 Xiyu Shi 1 Jie Zhao 5 Jingling Xue 6 Huimin Cui 1 2

Xiaobing Feng 1 2 3

ABSTRACT
As emerging applications are rapidly moving to accelerators, a great deal of research has been proposed to improve
the performance of the accelerators. For the AI applications, fruitful software-driven research has been focused
on proposing new programming languages, new kernel fusion heuristics, new optimization tuning approaches,
and new software execution engines. However, how to leverage classical compiler optimizations to generate
efficient code is an overlooked aspect of performance. In this paper, we propose a whole-program analysis and
optimization compiler framework, SIRIUS, to uniformly model the host and kernel computations in a unified
polyhedral representation and, further, seek maximal fusion opportunities from the global view so that the fused
kernel can benefit from classical optimizations. Evaluations over representative DNN models demonstrate that
SIRIUS can achieve up to 11.98× speedup over TensorRT, and 154.84× speedup over TensorFlow. In particular,
for BERT, SIRIUS can achieve 1.46× speedup over TensorRT.

1 INTRODUCTION

Emerging applications such as intelligent virtual assis-
tants (Brown et al., 2020), autonomous driving (Zoph et al.,
2018), and computer-aided drug designs (Jia et al., 2020)
have been transforming the ways we live, work and thrive.
All these applications are powered by the massive, readily
available computation powers from dedicated accelerators
such as GPUs, TPUs, and neural engines (Jia et al., 2019b;
Jouppi et al., 2017; Liao et al., 2019; Rocki et al., 2020;
Zhao et al., 2019a). Therefore, their performance is essen-
tial to unlocking innovations that reshape our society in the
next decade.

The fast evolution of accelerator applications (Amodei et al.,
2016; Fu et al., 2019; Gupta et al., 2020; Hemmat et al.,
2020; Hochreiter & Schmidhuber, 1997; Judd et al., 2016;
Krizhevsky et al., 2017; Kwon et al., 2019; Ning et al., 2019;
Qin et al., 2020; Sutskever et al., 2014; Xie et al., 2017; Zoph
et al., 2018) and hardware architectures (González-Alvarez
et al., 2016; Jia et al., 2019b; Jouppi et al., 2017; Liao et al.,
2019; NVIDIA Corporation., 2017; Rocki et al., 2020; Zhao
et al., 2019a) present unique challenges to optimizing com-

*Equal contribution 1SKLP, Institute of Computing Technology,
CAS 2University of Chinese Academy of Sciences 3Zhongguancun
Laboratory 4Hengmuxing Technologies 5State Key Laboratory of
Mathematical Engineering and Advanced Computing 6University
of New South Wales. Correspondence to: Ying Liu <liuy-
ing2007@ict.ac.cn>.

Proceedings of the 6 th MLSys Conference, Miami, FL, USA, 2023.
Copyright 2023 by the author(s).

pilers. Accelerator applications, particularly deep neural
network (DNN) applications are semi-structured but also
convoluted. An optimizing compiler must generate perfor-
mant implementations of primitive operators, untangle the
convoluted dependency of the network and properly stage
the network down to a streamlined, tailored implementation
for specific hardware to deliver the required performance.

Numerous research has been conducted on improving
the performance of DNN networks via extremely manu-
ally optimizations (Ahmed et al., 2022), developing high-
performance libraries of primitive operators (NVIDIA Cor-
poration., a;b), providing supports from programming lan-
guages (Abadi et al., 2016; Baghdadi et al., 2019; Chen et al.,
2018a; Hagedorn et al., 2020; Liu et al., 2022; Ma et al.,
2020; Ragan-Kelley et al., 2013), fusing GPU kernels of
different layers (Ma et al., 2020; Wahib & Maruyama, 2014;
Wang et al., 2021; Zhao et al., 2022; Zheng et al., 2020b;c;
2022), and choosing the performant candidates via auto tun-
ing (Chen et al., 2018a; Jia et al., 2019a; Zhang et al., 2020;
Zheng et al., 2020b). Experience shows that kernel fusions
are able to reduce the synchronization overheads between
the host and the accelerator, extract parallelism via aligning
the data dependency of the network with the hardware exe-
cution units (Ma et al., 2020; Niu et al., 2021), and utilize
memory bandwidths via pipelining the computations (Zhao
et al., 2021; 2022; Zheng et al., 2022).

Rather than seeking fusion opportunities starting from the
graph and operator representations in existing AI ecosys-
tems (including programming framework, e.g., Tensor-
Flow/PyTorch, and AI compilers, e.g., TVM), we investigate

SIRIUS: Harvesting Whole-Program Optimization Opportunities for DNNs

the performance potential from the perspective of classi-
cal compiler optimizations, by starting from all the source
codes of DNN models, enhancing the inter-procedural and
whole-program analysis towards heterogeneous program-
ming models, seeking fusion opportunities from the global
view and leveraging existing compiler optimization tech-
niques to improve the performance of DNN models.

Figure 1(a) shows a sub-graph selected from BERT (Devlin
et al., 2018) and (b) shows its performance characteristics.
The sub-graph includes three branches sharing one common
input matrix, corresponding to the QKV computations in
the self-attention mechanism. For each branch, the GEMM
operator is followed by an add operator and a reshape
operator. We discuss the implementations of the sub-graph
in state-of-the-art deep learning systems as follows:

• No-fusion (TensorFlow). The circled sub-graph has
9 operators in total, i.e., 9 kernels with 4, 715, 712
instructions, and its execution time is 54.00µs.

• Apollo fusion. For this sub-graph, Apollo (Zhao et al.,
2022) would fuse the GEMM and add together and
reduce the number of operators to 6 with 3, 818, 016
instructions, by leveraging partition-based fusion, and
its execution time is 46.20µs.

• TensorRT fusion. TensorRT (TRT) (NVIDIA Corpo-
ration., a) manually fused the three GEMM and add
operators together, reduces the number of operators to
4 with 3, 337, 632 instructions, thus the execution time
is 29.91µs.

• SIRIUS (our system). After our whole-program analy-
sis, we can fuse all the 9 kernels into one and reduce
the number of instructions to 769, 536, and reduce the
execution time to 15.82µs.

Furthermore, we can perform a number of classical whole-
program compiler optimizations, and we discuss two opti-
mizations here. First, we can identify that there exist three
load operations for one common read-only data input thus
two of them can be eliminated by leveraging the redundant
load elimination algorithm. Second, we can perform SSA-
based dead code elimination on the fused instructions from
GEMM, add, and reshape. In particular, as shown by the
pseudo-code in Figure 1(c), three branches with 27 pseudo
instructions(each of them executed 9 pseudo instructions),
would be optimized into 13 pseudo instructions.

To explore to which extent accelerator applications can ben-
efit from whole-program analysis and optimizations for host
and kernels, we have designed and implemented SIRIUS, a
compiler framework that coordinately optimizes parallel (by
exploiting parallelism between threads) and sequential per-
formance (by increasing the performance of each thread) for

accelerator applications. SIRIUS takes the CUDA kernels
and the driver codes from the host side as inputs, explores
different fusion schedules to optimize for both parallel and
sequential performance of the applications, and finally out-
puts the optimized, transformed program. SIRIUS exploits
three simple heuristics: (1) propagating information across
the host and device kernels, (2) greedily maximizing the
fusion schedule that would not introduce global synchro-
nizations, and (3) preferring a fusion schedule that merges
the same fragments in close proximity to facilitate the thread
organization.

We have evaluated SIRIUS using 6 representative deep neu-
ral networks on an NVIDIA A100 system and an NVIDIA
V100 system. On the A100 system, SIRIUS achieves 1.46×
speedup over TensorRT for BERT.

This paper makes the following contributions:

1. It describes the performance profiles for representative
accelerator applications. It identifies that enlarging
the scope for code optimization can have significant
impacts on the performance of the accelerator kernels.

2. It unifies the data dependencies and synchronizations
from both the host and device sides of the applica-
tions on a unified polyhedral abstract representation,
which enables performing inter-procedural optimiza-
tions across the host driver and multiple device kernels.

3. It proposes two heuristics to globally seek greedy fu-
sion opportunities and arrange the code fragments after
fusion. It demonstrates their effectiveness quantita-
tively on 6 representative deep neural networks.

4. It achieves an average of 4.32× (up to 7.12×) speedup
over TensorRT for the 6 DNN models. In particular, for
BERT, SIRIUS achieves 1.46× speedup over TensorRT.

2 OVERVIEW
Figure 2 describes the overall architecture of SIRIUS. SIR-
IUS first takes CUDA programs as inputs and compiles
both the host and device sides of a program into LLVM
IR. Second, SIRIUS leverages whole-program analysis to
capture the data and control dependency for the LLVM IRs
of the whole program on the unified abstract representations
(UAR) (Section 3). UAR represents the dependency in the
polyhedral domains (Bondhugula et al., 2008; Zhao & Di,
2020) to describe the fine-grain memory layouts and access
patterns.

To precisely represent the data dependency across kernels,
UAR annotates such a data dependency with its width to in-
dicate the scope that carries the dependency. SIRIUS defines
three types of level annotations, i.e., thread-level, block-
level, and global. In particular, a thread/block-level data
dependency means the dependency is one-to-one from the
thread/block of the source kernel to the thread/block of the

SIRIUS: Harvesting Whole-Program Optimization Opportunities for DNNs

GEMM:
 QS1=gemm(load(G),load(QW));
 QG1=store(QS1);
add:
 QS2=add(load(QG1), biasQ);
 QG2=store(QS2);
reshape:
 store'(load(QG2));

(c) SIRIUS: pseudo-code before and after optimizations

GEMM add reshape

Input Input Input

(a) Fusion results by TF/Apollo/TRT/SIRIUS(our approach)

(b) Performance characteristics

GEMM:
 VS1=gemm(load(G),load(VW));
 VG1=store(VS1);
add:
 VS2=add(load(VG1), biasV);
 VG2=store(VS2);
reshape:
store'(load(VG2)) ;

TF Apollo TRT SIRIUS
#of Kernels 9 6 4 1
#of Threads 1,022,976 912,384 898,560 12,288
Runtime(μs) 54.00 46.20 29.91 15.82

Total SASS insts.(105) 47.15 38.18 33.38 7.69

Input

Fusion:
 S=load(G);
 Q=gemm(S,load(QW));K=gemm(S,load(KW));V=gemm(S,load(QV));
 add(Q, biasQ);add(K,biasK);add(V,biasV);
 store'(Q);store'(K);store'(V);

GEMM:

……

SIRIUSTRTApolloTF

Computing “Q” Computing “K” Computing “V”

Figure 1. Motivation example (a sub-graph from BERT).

Clang Whole-program optimizationsWhole-program analysis

Host program

CUDA / OpenCL

kernels

LLVM IR
Unified

Abstract

Representation
LLVM IR

Candidates of

executables

Auto tuning

Final executable

Figure 2. Overall architecture of SIRIUS.

target kernel. A thread-level data dependency means the
two kernels can be fused without introducing any synchro-
nization statements, while a block-level data dependency
means a syncthreads is required when fusing these
two kernels. A global dependency means that there exist
cross-block dependencies between two kernels, e.g. the
input data of a subsequent kernel’s block is the output data
of multiple blocks in the prior kernel. Figure 3(a) shows the
pseudo-code for the sub-graph of BERT discussed in Fig-
ure 1, and Figure 3(b) shows the block-level, thread-level,
and global dependencies.

The key insight for fusion in SIRIUS has three principles.

• (Principle 1 (P1)). If two kernels have only
thread/block-level dependencies, they can be fused
locally by merging the kernel statements in order.

• (Principle 2 (P2)). If two kernels have global depen-
dencies, fusion is disabled due to the fact that global
synchronizations are poorly supported by GPUs (Har-
ris et al., 2007; Xiao & Feng, 2010).

• (Principle 3 (P3)). If two kernels have no dependen-
cies, SIRIUS fuses them together only when they have
high code similarity (we restrict they are the same in
this paper).

SIRIUS computes a greedy fusion schedule using two passes,
i.e., a local fusion followed by a global fusion. The local
fusion pass is implemented as a BFS traverse on UAR, and

the global fusion pass is implemented using the ISL solver
by introducing a schedule constraint that specifies the execu-
tion order of two kernels with global data dependencies in
UAR. For Figure 3(b), the GEMM(2) is not fused due to the
global data dependency, and the three branches are fused
since they have no dependencies and have the same code.

SIRIUS fuses the invocations of kernels from the output
schedule. Kernels can be arranged horizontally (i.e., exe-
cuting the fragments in different blocks for parallelism) or
vertically (i.e., executing the fragments in the same thread
for sequential performances). Essentially different arrange-
ments present different tradeoffs between parallelism and
sequential performance. The optimal tradeoff is highly de-
pendent on hardware configurations. Therefore SIRIUS uses
an auto tuner to choose the performant schedule and reports
it to the users.

3 CONSTRUCTING THE UNIFIED
ABSTRACTION REPRESENTATION (UAR)

UAR describes the synchronizations and data dependency
of both the host driver and device kernels on a single, unified
dependency graph. It represents the dependency as affine
relations in polyhedral domains to capture the dependency
and access patterns. The information of UAR drives inter-
procedural analysis and transformations in SIRIUS.

3.1 Backgrounds
This subsection provides basic backgrounds on polyhedral
analysis (Baghdadi et al., 2019; Bondhugula et al., 2008;

SIRIUS: Harvesting Whole-Program Optimization Opportunities for DNNs

(e) Global UAR for fused kernel after opt.(a) The pseudo-code (d) Global UAR for fused kernel before opt.

__syncthreads

S0 S1 S2 S3 S4 S5 S6 S7

P0 P1 P2 P3

__syncthreads

S0 S1 S2 S3 S4 S5 S6 S7

P0 P1 P2 P3

__syncthreads

S0 S1 S2 S3 S4 S5 S6 S7

P0 P1 P2 P3

__syncthreads

S0

S0

S0

S1 S2

S2

S2

S3

S3

S3

S4

S4

S4

S5

S5

S5

S6

S6

S6

S7

S7

S7

P0 P1 P2 P3

virtual data dep.

data dep.

(c) Local UAR

add reshape

S0 S1 S2 S3 S4 S5

S6 S7

P0 P1 P2

GEMM

void bert() {
gemm<<<96,128>>>(input, Q, outputQ)
add<<<384,384>>>(outputQ, biasQ)
reshape<<<384,384>>>(outputQ)
gemm<<<96,128>>>(input, K, outputK)
add<<<384,384>>>(outputK, biasK)
reshape<<<384,384>>>(outputK)
gemm<<<96,128>>>(input, V, outputV)
add<<<384,384>>>(outputV, biasV)
reshape<<<384,384>>>(outputV)
gemm<<<108,128>>>(outputK, outputV, outputKV)
softmax<<<4608,32>>>()
gemm<<<72,128>>>(outputQ, outputKV) }

void gemm(half* in1, half* in2, half* out) {
S0: wmma::fill_fragement(0.0f)

in1 += off; in2 += off; out += off
kLoop :

S1: load_to_shared(in1_sha+off, in1+off)
S2: load_to_shared(in2_sha +off, in2+off)
P0: __syncthreads
S3: wmma::load_matrix_sync(in1_w, in1_sha)

wmma::load_matrix_sync(in2_w, in2_sha)
wmma::mma_sync(out_w, in1_w, in2_w)

P1: __syncthreads
S4: wmma::store_matrix_sync(out_sha, out_w)
P2: __syncthreads
S5: store_to_global(out, out_shared) }
void add(half* in1, half* in2, half* out) {

idx = blockIdx * threadDimx + threadIdx
S6: out[idx] = in1[idx] + in2[idx] }
void reshape(half* in, half* out) {

i = blockIdx, j = threadIdx
S7: out[j/32][i][j%32] = in[i][j] }

(b) Dataflow graph and data dependencies

thread-level dep.

block-level dep.

global dep.

thread of GEMM
thread of add

thread of reshape

GEMM (1) GEMM (1)

add add

reshape reshape

GEMM (2) GEMM (2)

block
grid

input GEMM op.
add op.

reshape op.

softmax op.

Q

Q

Q

K

K

K

V

V

V

“Q”

“K”

“V”

Figure 3. Workflow of SIRIUS for the sub-graph in BERT.

Bondhugula, 2008; Grosser et al., 2012) and the call graph.

A dependency graph G = (V,E) is a directed multigraph
that records the data and control dependencies for a particu-
lar procedure. A vertex v ∈ V represents a statement in the
procedure. An iteration vector i⃗ = (i0, i1, . . . , in) ∈ Dv

describes the values of the indices of all loops surround-
ing the vertex v. An edge e = (Si, Sj) ∈ E defines an
edge from statement Si to statement Sj , which represents a
polyhedral dependence from a dynamic instance of Si to an
instance of Sj . The polyhedral dependence is characterized
by the dependence polyhedron Pe (Bondhugula et al., 2008;
Bondhugula, 2008) that captures the exact dependence in-
formation of e based on iteration vectors. If s⃗ and t⃗ are
the source and target iterations that are dependent, we can
express

⟨s⃗, t⃗⟩ ∈ Pe ⇐⇒ s⃗ ∈ DSi , t⃗ ∈ DSj

are dependent through edge e ∈ E

3.2 UAR

UAR is defined as a dependency graph G with additional
information for modeling host driver and device kernels in
a unified manner. In UAR, the vertex v ∈ V is character-
ized by the memory effect of the host or kernel statement
represented by v, and the edge e is characterized by the
dependence polyhedron Pe, which describes the synchro-
nizations and data dependency between dynamic instances
of statements of both the host driver and device kernels.

SIRIUS constructs the UAR in two phases. SIRIUS first
performs a local analysis for each function. It analyzes the
dependency and effects of each statement. Second, SIRIUS

traverses the call graph from the bottom to propagate the
results from local analysis to each call site. Ultimately, it re-
sults in a unified graph describing the program’s dependency.

3.3 Local analysis
The local analysis phase performs two functionalities, i.e.,
performing dependency analysis for each function and com-
puting memory access effect of each function.

Analyzing local dependency. SIRIUS augments the depen-
dency analysis in LLVM (Lattner & Adve, 2004) in two
ways to compute the local dependency graph for each func-
tion. First, SIRIUS introduces loops in device functions
to represent the parallelism for both the blocks and the
threads.1 Second, if SIRIUS is able to show that quasi-affine
accesses (such as modulo expressions) only happen inside
the same block, SIRIUS rewrites the quasi-affine accesses
into affine by replacing the modulo expression using its
value range to compute the memory effects.

SIRIUS does not resolve the call sites during the phase of
local analysis. It marks the call site with unknown effects
and adds edges for control dependency to prevent reorder-
ing the call sites. SIRIUS treats synchronization barriers
like syncthreads as special function calls. It adds the
edges for control dependency but annotates it with empty
effects.

As no data dependencies exist between a computation state-
ment and synchronization barriers, it is not straightforward
to explicitly express their execution order in the polyhe-

1SIRIUS does not support syncwarp() yet as we found it is
not widely used. Warps can be modeled in a similar way.

SIRIUS: Harvesting Whole-Program Optimization Opportunities for DNNs

dral model. However, the synchronization barriers intimate
implicit control dependencies to the program, we thus intro-
duce a virtual data dependency between a synchronization
barrier and the execution statements by converting the im-
plicit control dependencies into data dependencies, and we
denote such dependencies as virtual data dependencies.

SIRIUS follows a similar workflow for procedures on
the host, except that it recognizes intrinsics such as
memory operations, including copies and mallocs, as
well as synchronization primitives (e.g., cudaDevice-
Synchronize()) and annotates them accordingly.

Computing memory effect. For each kernel, SIRIUS ex-
tends the scalar evolution algorithm in LLVM to compute
its memory effect at the level of thread, block and kernel. In
particular, the memory effect for a kernel is represented as a
read-set and a write-set representing the memory locations
that are read and written by the kernel, at the level of thread-
/block/kernel. SIRIUS invokes the ScalarEvolutionAnalysis
pass to compute the thread-level memory effect directly. For
each thread block, SIRIUS aggregates the memory effects of
all threads in the block on the dimension of thread ID, and
obtains the block-level memory effect. Similarly, SIRIUS
aggregates the memory effects of all thread blocks on block
ID dimension, obtaining the kernel-level memory effect.

3.4 Bottom-up analysis
The bottom-up analysis propagates the dependency and the
effects along the call graph to compute the UAR for the
whole program, and determines the polyhedra of each data
dependency together with its dependency width.

SIRIUS propagates the information via cloning. Starting
from the bottom of the call graph, the bottom-up analysis
resolves the parameters for the call sites, inlines the local
UAR into the UAR of the caller, and determines the data
dependency width. When resolving the call sites of kernel
launches, SIRIUS inlines only the callee’s effects on the
global memory heaps instead of its UAR, thus it discards
the effects on shared memory which are irrelevant on the
host side.

By examining the memory effect of each call site, SIRIUS
enhances the dependency analysis algorithm in LLVM to
compute the dependency polyhedra Pe and annotates it with
the tag of thread-level, block-level or global. For a data
dependency e<s,t>, its width is determined by the level
that carries the dependency. For example, consider the
dependency caused by an array A which is written by s and
read by t, for s we use A

thread(tid)
s , Ablock(bid)

s and As to
represent the access region of s’s one thread, one thread
block and the whole kernel respectively, and similar for t.
The dependency width of e is defined as block-level, only if
the access regions from the blocks of s are linear disjoint

∀(i, j)Ablock(i)
s ∩A

block(j)
s = ∅

and the access region from each block of t depends on only
one block of s

∀j,∃!i, Ablock(i)
s ∩A

block(j)
t ̸= ∅

The width of thread-level and global are defined similarly.

Currently, we have not implemented the support of indirect
or recursive calls in SIRIUS. Our experience shows that
the majority of accelerator programs rely on simple direct
calls. Supporting recursive calls would allow SIRIUS to ana-
lyze use cases such as depth-first search which has irregular
patterns. It is possible to implement the supports using ap-
proaches described in data-structure analysis (Lattner et al.,
2007).

Example. Figure 3 (a) describes the implementation of the
BERT sub-graph, (c) shows the local UAR of GEMM, add
and reshape, and (d) shows the top-level UAR. Solid
and dashed arrows represent the virtual and the real data
dependency. SIRIUS also annotates the edges of virtual
dependency with corresponding polyhedra and width anno-
tation.

3.5 Alias Analysis
The key challenge in our alias analysis is to track and re-
solve the mappings between the host handles and the actual
regions of the device memories. SIRIUS first categorizes the
pointers of the whole program into host pointers and device
pointers, analyzes the cudaMemcpy statements to ensure
that there does not exist alias across host and device pointers,
and then performs alias analysis for the host pointers and
device memories separately.

To get more precise analysis results, SIRIUS extends the
Andersen’s algorithm (Andersen, 1994) and implements
a field-/array-/context-sensitive path-insensitive inclusion-
based points-to algorithm. SIRIUS leverages the approaches
proposed by (Pearce et al., 2007; Whaley & Lam, 2004) for
implementing the field-/array-/context-sensitivity in LLVM.

The analysis is accurate enough for DNN models due to
their regular memory accesses. For DNN models, the mem-
ory effect analysis and dependence analysis may introduce
some inaccuracy. For example, if a kernel contains a mod-
ulo operation to compute the array subscript, SIRIUS would
change the modulo operation into affine by using its value
range. Therefore, the memory effect analysis would report
an amplified result. For our DNN benchmarks, the inaccu-
racy would not introduce further dependency analysis and
optimizations.

4 DERIVING THE FUSION SCHEDULES

4.1 Computing a greedy fusion schedule

As discussed in Section 2, we introduced three principles
for computing the fusion schedule and implementing them
using a local fusion pass followed by a global fusion pass.

SIRIUS: Harvesting Whole-Program Optimization Opportunities for DNNs

For Principle (P1), the local fusion pass performs a BFS
traverses to the top-level UAR. For each node, if it carries
only thread-level or block-level data dependency to its pre-
decessor, SIRIUS would merge them into one node, and their
execution order can be guaranteed by placing the statements
in order and inserting syncthreads for block-level de-
pendencies.

For Principle (P2) and (3), SIRIUS leverages the ISL solver
to compute a fusion schedule over the top-level UAR. SIR-
IUS generates the relations and feeds the relations to the ISL
solver, then the solver would determine a schedule by mod-
eling the validity relations into ILP constraints (Verdoolaege
et al., 2017; Zinenko et al., 2017).

0 0 1

0 0 1

0 0 1

Q

Q

Q

Q

Q

Q

…

…

…

…

K

K

K

K

K

K

…

…

…

…

V

V

V

V

V

V

Q

Q

Q

Q

Q

Q

…

…

…

…

K

K

K

K

K

K

…

…

V

V

V

V

V

V

Q

Q

Q

Q

Q

Q

…

…

…

…

K

K

K

K

K

K

…

…

V

V

V

V

V

V

(a) Vertical

K

K

K

Q

Q

Q

V

V

V

K

K

K

Q

Q

Q

V

V

V

…

…

K

K

K

Q

Q

Q

V

V

V

K

K

K

Q

Q

Q

V

V

V

…

…

K

K

K

Q

Q

Q

V

V

V

K

K

K

Q

Q

Q

V

V

V

…

…

…

…

0 0 1

GEMM
add
reshape

block
kernel

thread

input slice

(b) Horizontal

0 0 1

0 0 1

0 0 1

Figure 4. Vertical and horizontal kernel arrangement.

First, SIRIUS leverages the validity relations to represent
Principle (P2) by introducing a schedule constraint to spec-
ify the execution order of two kernels with global data de-
pendencies in UAR. In particular, only the global data de-
pendencies would be modeled as constraints and fed to the
ISL solver. If two kernels have thread-level/block-level data
dependencies, they have been merged into one during the
local fusion pass.

4.2 Arranging kernel fragments - horizontal and
vertical

Given a set of kernel fragments without dependencies, SIR-
IUS can fuse them in two possible directions. As shown
in Figure 4, it can fuse the kernel either horizontally (i.e.,
executing the fragments in different blocks) or vertically
(i.e., executing the fragments in the same thread). The two
directions represent tradeoffs between parallelism and op-
portunities for sequential optimizations. The horizontal
fusion would increase the parallelism. However, the ver-
tical fusion decreases the parallelism but it can open up
more opportunities for post-fusion compiler optimizations.
Therefore, SIRIUS generates a series versions of codes from
fully horizontal to fully vertical (with some hybrid versions
in-between), applies a number of optimizations described in
Section 5, and leverages auto-tuning to select the performant
version.

When generating code for vertical fused fragments, SIR-

IUS concatenates the shared memory buffers to utilize the
shared memory more efficiently. When fusing fragments
with different iteration domains (i.e., blocks and threads),
SIRIUS aligns them either to the maximal or the minimal
domain and generates corresponding if or for statements
accordingly. When a fuse involves an element-wise ker-
nel, SIRIUS adjusts its iteration domain according to other
kernels thus the element-wise statements can be embedded
into the iteration domain of the fused kernel. For horizontal
fusion code generation, SIRIUS reconfigures the gridDim
and BlockDim for the host and emits branches to different
kernels for the device.

Example. SIRIUS detects that the nine operators as the
fusion candidates in Figure 3, and the local fusion pass
fuses the GEMM, add and reshape vertically and inserts
syncthreads between GEMM and add to ensure the

execution order during the BFS traverse. The three nodes
of UAR would be merged into one, denoted as LFK. Then
the global fusion pass leverages the ISL solver and obtains
the schedule that the three LFK nodes are fused since they
have no dependencies and have the same code.

Furthermore, as shown in Figure 4, the ”Q/K/V“ three
branches be fused from fully horizontal to fully vertical.
In Figure 4(a), one input slice is executed in multiple blocks
and each thread executes the ”GEMM+add+reshape” com-
puting sequence for Q, K and V. In Figure 4(b), each block
executes ”GEMM+add+reshape” computing sequence for Q
or K or V. SIRIUS selects the fully vertically fused version
as the performant one via auto-tuning. Section 7 discusses
these tradeoff between parallelism and sequential optimiza-
tions in detail.

5 OPTIMIZING FUSED KERNELS

Algorithm 1 Optimizing synchronizations
Input: uar
Result: uar

1 for vdep in uar.vdeps do
2 for ddep in uar.ddeps do
3 if No VDep Path(ddep.src, ddep.dst) then
4 uar.remove(cdep);

5 for vdep in uar.vdeps do
6 for ddep in uar.ddeps do
7 if Exist VDep Path BypassV(ddep.src, ddep.dst, vdep)

then
8 uar.remove(cdep);

9 for pnode in uar.cdeps do
10 if pnode.out degree == 0 then
11 uar.remove(pnode);

12 return uar

With the derived fusion schedule, SIRIUS merges the lo-
cal UARs together and gets the fused UAR. For fragments

SIRIUS: Harvesting Whole-Program Optimization Opportunities for DNNs

that are horizontally fused, SIRIUS does not introduce extra
synchronizations since the fragments are executed by differ-
ent blocks. For fragments that are vertically fused, SIRIUS
inserts a synchronization node between these fragments if
there exist block-level data dependencies.

In the fused UAR, a synchronization is represented as a
virtual data dependency edge, which is redundant when it
does not carry actual data dependency. After removing all
redundant synchronizations, SIRIUS performs code motion
and post-fusion optimizations.

5.1 Removing redundant synchronizations

The key point for optimizing synchronizations is that for
each data dependency edge from s to t, there should exist
only one virtual data dependency edge from s to t. We ab-
stract the problem of removing redundant synchronizations
as a special case of barrier minimization problem, which
has been well studied by a number of researchers (Hatcher
& Quinn, 1991; O’Boyle & Stohr, 2002; Tseng, 1995). In
particular, Darte and Schreiber proposed an algorithm to
solve the problem in linear time (Darte & Schreiber, 2005).
This paper implements a tailored version of the linear-time
algorithm for our UAR (Algorithm 1).

Algorithm 1 traverses the fused UAR for each virtual data de-
pendency edge, and removes it when it is redundant, where
“redundant” is defined as follows.

• A virtual data dependency edge e(s → t) is redundant,
if for any data dependency edge e′(s′ → t′), there does
not exist a virtual data dependency path from s′ to t′

that contains e.

• A virtual data dependency edge e(s → t) is redundant,
if for any data dependency edge e′(s′ → t), all virtual
data dependency paths from s′ to t contain another
virtual data dependency edge.

• A synchronization node is redundant if its out-degree
is 0.

5.2 Post-fusion optimizations

Besides traditional compiler optimizations in LLVM, such
as the redundant load elimination and dead code elimination
discussed in the motivation example, SIRIUS extends the
following post-fusion optimizations.

Code motion. After removing synchronizations, the fused
UAR would be split into a set of connected components.
There is no data dependency between these connected com-
ponents, therefore SIRIUS applies code motion to enable
them to share a common set of synchronizations. For ex-
ample, the fragments of (S1 → P0 → S2 → S3) and
(S1′ → P0′ → S2′) are changed into ({S1, S1′} →
P0′ → {S2, S2′} → S3).

Constant propagation. By uniformly representing the host
and kernel codes in UAR, SIRIUS propagates the constant
from the host to the kernel codes, thus the vendor compil-
ers can generate optimized instructions using the constant
values.

Reshaping iteration domains for mapping operations. When
a fuse involves a fragment annotated as a pair-wise mapping
or reduction operation, SIRIUS simply reuses the iteration
domain of other fragments of the fuse and adjusts the gener-
ated code.

6 IMPLEMENTATION

We implement SIRIUS with about 7K lines of C++ code, in-
cluding three major components: UAR construction, fusion
derivation, and optimizing fused kernels.

We implement the component of UAR construction based
on LLVM release/16.x. We use PipLib (PipLib) 1.3.3 as
the ILP solver, which is in line with Pluto. After getting
the schedule from the ISL solver, we write about 2K C++
codes to implement the functionality of generating fused
kernel IR and arranging kernel fragments with the given
fusion schedule.

7 EVALUATION

We have evaluated SIRIUS on six representative DNN mod-
els (ResNeXt (Xie et al., 2017), NASNet (Zoph et al.,
2018), LSTM (Hochreiter & Schmidhuber, 1997), Deep-
Speech2 (Amodei et al., 2016), Seq2Seq (Sutskever et al.,
2014), and BERT (Devlin et al., 2018)). We focus our eval-
uation on model inference for DNN workloads.

LSTM, DeepSpeech2, Seq2Seq and NASNet are in line with
Rammer (Ma et al., 2020). ResNext are trained on Cifar10.
BERT is pre-trained on Wikipedia + Book Corpus Dataset.
SIRIUS relies on CUDA source codes to construct UAR and
perform optimization. The CUDA source code of SIRIUS
contains 245 operators in total, of which 231 operators are
from AutoTVM/Rammer, and 14 operators from BERT are
manually implemented to get comparable performance with
cuBLAS which is used by TensorRT. The trial number of
AutoTVM (TVM v0.12) is set to 2000. We conduct the
experiments on a server equipped with two Intel Xeon Gold
6248 CPUs, 768GB of DDR4 memory, and an NVIDIA
A100 GPU. The server is installed with Ubuntu 22.04 and
CUDA 11.8.

We compare the end-to-end performance with four DNN
compilers: TensorFlow (TF, version 1.15.5), TensorRT(TRT,
version 7.2), TVM, and Rammer (Ma et al., 2020). For the
BERT network, we also compare it with AStitch (Zheng
et al., 2022). The first 5 DNN models have the same hyper
parameters as described in (Ma et al., 2020). BERT is a

SIRIUS: Harvesting Whole-Program Optimization Opportunities for DNNs

standard Bert-base model with the parameters (sequence
length = 384, head num = layer num = 12, hidden dim = 64,
float16). We also present the performance numbers on an
NVIDIA Tesla V100 GPU as a reference. All performance
numbers are averages over 1, 000 runs. We observe that
there are little variances on the performance numbers.

7.1 Overall performances for DNN models

Shown by Figure 5, SIRIUS achieves average
speedups of 41.78×/21.76×/19.16×/5.15×(up to
154.84×/60.80×/43.69×/11.98×) over TensorFlow/TF-
XLA/TVM/TensorRT. Meanwhile, SIRIUS achieves
an average of 1.62× (upto 2.19×) over Rammer. The
performance improvements come from two aspects. First,
SIRIUS exploits more aggressive fusion opportunities
thanks to whole-program analysis. Second, the enlarged
kernel and vertical fusion open up more opportunities for
sequential optimization (for a single thread).

7.2 Performance Breakdown

Figure 6 shows the performance breakdown of our key tech-
nologies for BERT and LSTM. For each one, the bar of
baseline is the performance of the naive CUDA imple-
mentation, the bar of +fusion is the performance when
enabling fusion in SIRIUS without supporting vertical fu-
sion, the bar of +h/v fusion is the performance when
coordinately considering horizontal and vertical fusion, the
bar of +seqopt is the final performance when enabling
sequential optimizations.

Take BERT for example, the results demonstrate that the
simple fusion would reduce the execution time from 2.54ms
(baseline) to 2.06ms due to the reduced cost of kernel
launching. Then coordinately considering horizontal and
vertical fusion does not change the performance. The reason
is that the parallelism before horizontal fusion has been high
enough to fully utilize the GPU SMs, thus arranging the
code fragments horizontally or vertically would not change
the execution. However, vertical fusion opens more oppor-
tunities for compiler optimizations and reduce the execution
time to 1.79ms.

For LSTM, we can see similar observations. An exception
is that when we change the horizontal fusion into vertical
without optimization, the performance is decreased. The
reason is that vertical fusion reduces the parallelism thus the
GPU SMs cannot be fully utilized. But after the post-fusion
optimization, the performance is improved and outperforms
horizontal fusion.

We further take BERT as the example to discuss the effects
of post-fusion optimizations. As shown in Figure 7, BASE
denotes that the kernels are directly concatenated together
with no optimizations applied, and its execution time is

2.06ms. Then SIRIUS removes redundant synchronizations
and reduces the execution time to 2.04ms (OPTSYNC),
and the optimization of code motion reduces the execution
time to 1.86ms (CM). Finally the instruction optimizations
reduces the execution time to 1.79ms (INSTOPT). Figure 7
also shows the effect of post-fusion optimizations on the
number of instructions, with the right vertical axis.

7.3 Overhead Analysis

Our overhead comes from performing whole-program anal-
ysis, computing the fusion schedule using the ISL solver,
applying post-fusion optimizations, and tuning for the code
fragment arrangement (horizontal and vertical). Among
these overhead, performing whole-program analysis and
applying post-fusion optimizations consume less than 10
minutes for each DNN model. Computing the fusion sched-
ule using the ISL solver takes less than 3 minutes, since for
very large DNN models, such as NASNet and Bert, SIRIUS
splits the UAR into small basic units and seeks for fusion
schedule inside each basic unit. This scheme avoids to intro-
duce extremely high cost for compiling the whole network,
however, the basic unit has been large enough to enable the
compiler to perform inter-procedure optimizations.

For very large DNN models, SIRIUS splits the UAR into a
set of partitions according to user annotation and a threshold
of the number of kernels. First, it enables users to annotate
the building blocks in the network structure, such as the
“cell” in NASNnet. Second, it sets a threshold of 100, i.e.,
when the number of kernels in the network exceeds the
threshold, it would be split with the granularity of annotated
building blocks. The building blocks in DNNs are typically
loosely coupled, and the dependencies are concentrated
inside each building block. Therefore, each partition is large
enough to maintain the global views of one or more building
blocks.

The overhead of tuning for horizontal and vertical fusion
varies with DNN models, which depends on the number
of nodes that can be executed in parallel. For BERT, SIR-
IUS needs to perform tuning among three candidates and it
takes about 2 minutes, while for LSTM, SIRIUS searches
through 545 candidates, finishing in 54 minutes, where
NVCC spends most of the time.

SIRIUS takes the source code generated by TVM as inputs,
and the long compilation time is a long-time known issue
for TVM due to the large search space it formulates, e.g.,
compiling NASNet model requires 41.8 hours to finish 32%
search progress according to Roller(Zhu et al., 2022). Thus,
it is acceptable for SIRIUS to introduce extra <1 hour over-
head.

SIRIUS: Harvesting Whole-Program Optimization Opportunities for DNNs

Runtime(ms) Speedup over
Network TF TF-XLA TVM Rammer TRT SIRIUS TF TF-

XLA
TVM Ram-

mer
TRT

ResNext 41.61 123.42 47.78 3.86 24.32 2.03 20.50 60.80 23.54 1.90 11.98
NASNet 14.41 47.66 - 1.72 7.23 1.60 9.00 29.79 - 1.08 4.52

DeepSpeech2 38.28 11.53 20.87 3.09 3.92 1.59 24.11 7.26 13.15 1.94 2.47
LSTM 192.0 32.21 54.18 1.76 7.60 1.24 154.97 26.0 43.73 1.42 6.13

Seq2Seq 66.26 8.40 19.31 3.66 7.29 1.67 39.77 5.04 11.59 2.20 4.38
BERT 4.59 3.03 6.95 2.08 2.59 1.78 2.58 1.70 3.90 1.17 1.46

(a)

Runtime(ms) Speedup over
Network TF TF-XLA TVM Rammer TRT SIRIUS TF TF-

XLA
TVM Ram-

mer
TRT

ResNext 58.31 22.57 10.52 4.57 - 4.09 14.26 22.57 2.57 1.12 -
NASNet 23.51 20.57 2.81 2.01 4.16 1.89 12.44 20.57 1.48 1.06 2.20

DeepSpeech2 50.71 4.36 15.01 4.95 6.83 3.28 15.46 4.36 4.57 1.51 2.08
LSTM 153.40 20.54 30.54 3.82 10.59 2.98 51.48 20.54 10.24 1.28 3.55

Seq2Seq 97.67 11.27 23.23 3.87 30.68 1.94 50.35 11.27 11.97 1.99 15.81
BERT 7.80 5.88 - 7.10 3.76 3.02 2.58 1.97 - 2.35 1.25

(b)

Figure 5. End-to-end runtime and speedup for six DNN models on the NVIDIA A100 (a)/V100(b) system for batch size 1.

7.4 Case Study: The BERT model

SIRIUS speeds up the BERT model by 1.46×/1.25× over
TensorRT on A100/V100 as shown in Figure 5. Further-
more, we also compare SIRIUS with AStitch (Zheng et al.,
2022), Rammer (Ma et al., 2020) and TensorRT in this sec-
tion. For BERT with batch size 1 on V100 platform, SIRIUS
demonstrates the speedup of 1.61×, 2.35×, 1.25× over
AStitch, Rammer, TensorRT, respectively. We use the V100
platform since AStitch has not supported A100 yet.

Here we further discuss the performance benefit when com-
paring with AStitch, Rammer, and TensorRT. Consider the
BERT sub-graph of 9 operators in Figure 1. AStitch is de-
signed to fuse and optimize memory-intensive operators,
and it can fuse the add and reshape operators, reducing
kernel numbers to 6. Rammer is designed to fuse small ker-
nels together to exploit inter-operator parallelism and fully
utilize GPU SMs, For the sub-graph in Figure 1, it only
fuses the three add operators together, leading to 7 kernels
in total. TensorRT manually fuses the three GEMM and three
add operators into one kernel while leaving reshape op-
erators not fused. This results in a total of 4 kernels. In
comparison, SIRIUS has only 1 kernel after fusion.

Impacts of batch size. We further evaluate SIRIUS when
varying the batch size (i.e., 1, 4, 16). Figure 8 shows their
performance normalized to TensorFlow. SIRIUS achieves
an average speedup of 1.56× over AStitch, 2.92× over
Rammer, and 1.48× over TensorRT. In summary, SIRIUS

can improve BERT performance for different batch sizes.

7.5 Case Study: The LSTM model

For LSTM, SIRIUS can obtain significant performance im-
provement, i.e, 6.13× over TensorRT and 1.42× over Ram-
mer. Figure 9(a) shows the code skeleton of LSTM and (b)
shows the data dependencies. Each dot in (b) represents
a LSTM cell with each one including 8 gemv invocations
and 1 solve invocation. It shows that there does not exist
data dependencies along the back-diagonal dimension, both
SIRIUS and Rammer can finds the fusion opportunity along
the back-diagonal dimension, which is called as wavefront
in Rammer.

For LSTM, SIRIUS and Rammer show two differences.
First, SIRIUS fuses all the gemv and solve from all the
cells along the wavefront dimension, and gets one kernel
for each wave, while Rammer generates two kernels for
each wave, one for gemv and the other for solve. Sec-
ond, the code fragments are arranged in a different way, i.e.,
horizontal in Rammer and vertical in SIRIUS, as shown in
Figure 9(c). The enlarged fused kernel and vertical arrange-
ment enables more instruction optimizations, as discussed
below.

In comparison, TensorRT only fuses the eight gemv kernels
into one but fails to perform the skewed fusions. It launches
1040 gemv and 1000 solve kernels for the single batch case.
In addition, the fused kernel still generates MAD instruc-

SIRIUS: Harvesting Whole-Program Optimization Opportunities for DNNs

0

1

2

3

BERT LSTM

R
un

tim
e

(m
s)

25
30
35
40

baseline +fusion +h/v fusion +seqopt

Figure 6. Performance breakdown of SIRIUS.

1

1.2

1.4

1.6

1.8

2

R
un

tim
e

(m
s)

Runtime
0

0.5

1

1.5

2

2.5

3

N
o.

of
in

st
s.

(1
0
9

)

Total instruction counts

BASE OPTSYNC CM INSTOPT

Figure 7. Effects of post-fuse optimizations.

0

1

2

3

BS=1 BS=4 BS=16

Sp
ee

du
p

ov
er

T
F

AStitch Rammer TRT SIRIUS

Figure 8. Performance results for varying batch sizes on V100.

tions to compute the addresses for memory loads, resulting
4.51× more instruction counts compared to the one from
SIRIUS.
Instruction optimizations. Figure 10 describes various per-
formance characteristics for three different implementations
of a cell in the LSTM network. Analysis shows that there
are two to three times differences on the total number of
instructions executed. The baseline includes four kernels for
the multiplication and four kernels for fused multiplication
and partial-aggregation. Rammer fuses the eight gemv ker-
nels into one single kernel and generates one kernel for the
aggregation solve. One thing worth noting is that for each
FMA instruction, both implementations from Baseline and
Rammer need to issue a MAD instruction to compute the
address of the matrix element before issuing a load instruc-
tion. SIRIUS propagates the fact that the host allocates the
eight matrices in a contiguous memory region to the fused

void lstm() {
for s in range(0, steps)

for c in range(0,cells) {
// 4 pairs of gemv, 8 gemv in total.
gemv(t[0], W[c][0], sh[c-1]);
gemv(t[4], U[c][0], sh[c]);
gemv(t[1], W[c][1], sh[c-1]);
gemv(t[5], U[c][1], sh[c]);
gemv(t[2], W[c][2], sh[c-1]);
gemv(t[6], U[c][2], sh[c]);
gemv(t[3], W[c][3], sh[c-1]);
gemv(t[7], U[c][3], sh[c]);
solve0(t, bias, sc[c], sh[c]); }

(a) Source code

A’s

gemv0

gemv1

…

gemv7

solve

B’s

gemv0

gemv1

…

gemv7

solve

C’s

gemv0

gemv1

…

gemv7

solve

D’s

gemv0

gemv1

…

gemv7

solve

H’s

gemv0

gemv1

…

gemv7

solve

…

(d) Vertical fusion (in SIRIUS)

Kernel:

…

…

… … …

A’s

gemv0

A’s

solve

B’s

solve

H’s

solve

C’s

solve

A’s

gemv7

B’s

gemv0

B’s

gemv7

C’s

gemv0

C’s

gemv7

H’s

gemv0

H’s

gemv7

(c) Horizontal fusion (in Rammer)

Kernel1:

Kernel2:

(b) Fusion schedule

A

…

… …

…

…

… … …

…
…

…

…

…

B

H

C

D

Figure 9. Fusion schedule for LSTM in SIRIUS.

kernel. It rewrites the base addresses of the eight matrices as
an offset to a common base address, and groups the multipli-
cations within the same basic block. The compiler from the
vendors (i.e., NVCC (NVIDIA Corporation., 2021)) is able
to compute the offset in compile-time and to embed them
directly into the load instructions. The end result is that the
kernel from SIRIUS issues 1.56 auxiliary instructions per
FMA instruction per iteration.

Implementation Baseline Rammer SIRIUS
of Kernels 9 2 1
of Threads 18432 8448 2048

of FMA inst. 528,200 531,832 528,200
of aux. insts. /
FMA / iterations

6.1 3.1 1.9

Total inst. 4,300,106 2,723,558 1,669,450
Runtime (µs) 58.1 12.8 9.1

(a)

IMAD.WIDE R14, R17, R10,
c[0x0][0x160];

IMAD.WIDE R16, R19,
R10.reuse,
c[0x0][0x170];

LDG.E R14, [R14.64];
LDG.E R17, [R16.64];
IMAD.WIDE R18, R19, R10,
c[0x0][0x160];

LDG.E R18, [R18.64];

(b)

LDG.E R23,
[R4.64+-0x140c00];
LDG.E R21, [R60.64+-0x8];
LDG.E R20,
[R4.64+-0x1c0c00];
......
FFMA R22, R21, R22, R14;
FFMA R14, R21.reuse, R23,
R15;

(c)

Figure 10. (a) Performance characteristics of the implementation
of the LSTM cell kernel from Baseline, Rammer and SIRIUS on
an NVIDIA A100 system. (b) / (c) The assembly code snippets for
Rammer and SIRIUS.

8 RELATED WORK

Optimizing accelerator programs. When developing
DNN applications, users specify the network as a series of

SIRIUS: Harvesting Whole-Program Optimization Opportunities for DNNs

tensor transformations or a computation graph whose nodes
represent a DNN operator using frameworks like Tensor-
Flow (Abadi et al., 2016), TVM (Chen et al., 2018a), Tensor
Comprehension (Vasilache et al., 2019). Previous work op-
timizes DNN implementations through pattern substitutions
and kernel fusions (Chen et al., 2018b; Jia et al., 2019a;
Leary & Wang, 2017; Niu et al., 2021; Truong et al., 2016;
Zheng et al., 2020a;c), systematic scheduling to utilize par-
allelisms (Gao et al., 2019; Ma et al., 2020; Oh et al., 2021),
and auto tuning (Chen et al., 2018a; Zhao et al., 2019b;
Zheng et al., 2020b). Similar issues arise on image process-
ings and stencil computation kernels. Halide (Ragan-Kelley
et al., 2013) and Pencil (Baghdadi et al., 2015) enables users
to specify the applications in domain-specific languages
(DSL). Tiramisu (Baghdadi et al., 2019) and Fireiron (Hage-
dorn et al., 2020) develop DSL to specify the schedules and
memory layouts independently from the computations to
match the characteristics of the hardware.
Optimizing synchronization on parallel accelerators is cru-
cial for accelerator programs. A typical problem is the
barrier minimization problem, which has been extensively
explored (Darte & Schreiber, 2005; Hatcher & Quinn, 1991;
O’Boyle & Stohr, 2002; Tseng, 1995). (Hatcher & Quinn,
1991) presents a formalization of the barrier minimization
problem and suggests algorithms to minimize barriers within
nested inner loops. (O’Boyle & Stohr, 2002) proposes an
algorithm to provably place the minimum number of bar-
riers for perfect loop nests and certain imperfect loop nest
sequences. (Darte & Schreiber, 2005) proposes a linear-
time algorithm to solve this problem. These works provide
valuable references for post-fusion optimization in SIRIUS.

Polyhedral compilers. Polyhedral analysis (Baghdadi et al.,
2019; Bondhugula et al., 2008; Grosser et al., 2012; Hartono
et al., 2009; Mullapudi et al., 2015) models nested loops as
polyhedra and reasons about the transformations on top of
the polyhedra. Polyhedral analysis is able to drive complex
transformations like loop interchanges (Allen & Kennedy,
1984), tiling (Hartono et al., 2009; Zhao & Di, 2020), and
loop fusions (Bondhugula et al., 2008). Research has shown
that it is effective on optimizing scientific applications, im-
age processing and DNNs (Baghdadi et al., 2019; Cowan
et al., 2020; Pradelle et al., 2019; Zhao et al., 2021). Re-
search on improving the generality (Benabderrahmane et al.,
2010) and scalability (Vasilache et al., 2006) of polyhe-
dral compilers broadens the applicability of the methods.
(Turner et al., 2021) presents a new unified program transfor-
mation approach with the polyhedral model to optimizing
convolutional neural networks, further reducing neural ar-
chitecture search (NAS) search time. SIRIUS combines the
ideas of inter-procedural analysis (Lattner et al., 2007) and
polyhedral representation to capture a fine-grain picture of
the dependency of the full program. The fine-grain picture
allows SIRIUS to drive optimizations across codes on both

the host side and the device side.

Compiler supports for innovative architectures for accel-
erators. Innovative architectures (Jia et al., 2019b; Jouppi
et al., 2017; Liao et al., 2019; Rocki et al., 2020; Zhao
et al., 2019a) presents unique challenges for compilers due
to their multi-dimensional memory hierarchies, trade-offs
between parallelisms and locality, etc. AKG (Zhao et al.,
2021) demonstrates that the techniques of polyhedral com-
pilers. SIRIUS is orthogonal as it focuses on generating
fusion schedules that generate efficient sequential code for
the accelerators. It is possible to extend SIRIUS on these
architectures to further improve the performances of the
applications.

Closest related work. Recently, DNNFusion (Niu et al.,
2021) proposed to use a set of rules instead of patterns
for operator fusion, in comparison, SIRIUS further fuses
multiple independent branches together. AStitch (Zheng
et al., 2022) proposed to fuse memory-intensive operators,
in comparison, SIRIUS further fuses memory-intensive oper-
ators and computation-intensive operators (maybe libraries).
Rammer (Ma et al., 2020) proposed to fuse small kernels
for parallelism stitching, in comparison, SIRIUS can fuse
large and small kernel together, and further exploit vertical
fusion. Apollo (Zhao et al., 2022) leverages partition-based
approach to first split the graph into sub-graphs, and then
search for fusion opportunities. However, Apollo uses a
set of rules for the graph splitting, in comparison, SIRIUS
leverages compiler dependency analysis to determine the
fusion schedule. For the subgraph in Figure 1, only SIRIUS
fuses the 9 operators into one kernel.

9 CONCLUSION AND FUTURE WORK

This paper proposes an optimizing compiler framework,
SIRIUS. By modeling the host and kernel codes in a uni-
fied polyhedral representation, SIRIUS leverages polyhedral
analysis to expose maximal kernel fusion opportunities then
generates the fused kernels. Finally the fused kernel can ben-
efit from many traditional sequential optimizations. Evalu-
ations demonstrate that SIRIUS can achieve up to 11.98×
speedup over TensorRT. Specifically, for BERT, SIRIUS can
achieve 1.46× speedup over TensorRT.
SIRIUS suffers from two limitations. First, it requires to
see the CUDA source codes of the operators. Now SIRIUS
uses the CUDA codes generated by TVM. Our future work
will take the tensor expressions to facilitate the analysis and
optimizations. Second, SIRIUS cannot change the thread
organizations since it is an optimizing compiler after CUDA
code generation. Our future work will hoist it to TVM so
that the thread organizations can be optimized globally. And
we will leverage the SIRIUS approach to support the training
process in the future.

SIRIUS: Harvesting Whole-Program Optimization Opportunities for DNNs

ACKNOWLEDGEMENTS

We thank anonymous reviewers and our shepherd, Prof.
Michael O’Boyle, for their extensive suggestions. This work
was partially supported by the National Key R&D Program
of China (2021ZD0110101), the National Natural Science
Foundation of China (62232015, 62090024, U20A20226).

REFERENCES

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A.,
Dean, J., Devin, M., Ghemawat, S., Irving, G., Isard,
M., Kudlur, M., Levenberg, J., Monga, R., Moore, S.,
Murray, D. G., Steiner, B., Tucker, P., Vasudevan, V.,
Warden, P., Wicke, M., Yu, Y., and Zheng, X. Tensorflow:
A system for large-scale machine learning. In 12th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI 16), pp. 265–283, Savannah, GA,
November 2016. USENIX Association. ISBN 978-1-
931971-33-1. URL https://www.usenix.org/
conference/osdi16/technical-sessions/
presentation/abadi.

Ahmed, I., Parmar, S., Boyd, M., Beidler, M., Kang, K.,
Liu, B., Roach, K., Kim, J., and Abts, D. Answer fast:
Accelerating bert on the tensor streaming processor, 2022.

Allen, J. R. and Kennedy, K. Automatic loop inter-
change. In Proceedings of the 1984 SIGPLAN Sym-
posium on Compiler Construction, SIGPLAN ’84, pp.
233–246, New York, NY, USA, 1984. Association for
Computing Machinery. ISBN 0897911393. doi: 10.
1145/502874.502897. URL https://doi.org/10.
1145/502874.502897.

Amodei, D., Ananthanarayanan, S., Anubhai, R., Bai, J.,
Battenberg, E., Case, C., Casper, J., Catanzaro, B., Cheng,
Q., Chen, G., et al. Deep speech 2: End-to-end speech
recognition in english and mandarin. In International
conference on machine learning, pp. 173–182. PMLR,
2016.

Andersen, L. O. Program analysis and specialization for the
C programming language. PhD thesis, DIKU, University
of Copenhagen, 1994.

Baghdadi, R., Beaugnon, U., Cohen, A., Grosser, T., Kruse,
M., Reddy, C., Verdoolaege, S., Betts, A., Donaldson,
A. F., Ketema, J., Absar, J., Van Haastregt, S., Kravets,
A., Lokhmotov, A., David, R., and Hajiyev, E. Pencil:
A platform-neutral compute intermediate language for
accelerator programming. In 2015 International Confer-
ence on Parallel Architecture and Compilation (PACT),
pp. 138–149, 2015. doi: 10.1109/PACT.2015.17.

Baghdadi, R., Ray, J., Romdhane, M. B., Sozzo, E. D.,
Akkas, A., Zhang, Y., Suriana, P., Kamil, S., and Ama-

rasinghe, S. Tiramisu: A polyhedral compiler for ex-
pressing fast and portable code. In 2019 IEEE/ACM
International Symposium on Code Generation and Opti-
mization (CGO), pp. 193–205, 2019. doi: 10.1109/CGO.
2019.8661197.

Benabderrahmane, M.-W., Pouchet, L.-N., Cohen, A., and
Bastoul, C. The polyhedral model is more widely ap-
plicable than you think. In Gupta, R. (ed.), Compiler
Construction, pp. 283–303, Berlin, Heidelberg, 2010.
Springer Berlin Heidelberg. ISBN 978-3-642-11970-5.

Bondhugula, U., Hartono, A., Ramanujam, J., and Sadayap-
pan, P. A practical automatic polyhedral program opti-
mization system. In ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation (PLDI),
June 2008.

Bondhugula, U. K. Effective automatic parallelization and
locality optimization using the polyhedral model. PhD
thesis, The Ohio State University, 2008.

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan,
J., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G.,
Henighan, T., Child, R., Ramesh, A., Ziegler, D. M., Wu,
J., Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin, M.,
Gray, S., Chess, B., Clark, J., Berner, C., McCandlish, S.,
Radford, A., Sutskever, I., and Amodei, D. Language
models are few-shot learners. In Larochelle, H.,
Ranzato, M., Hadsell, R., Balcan, M., and Lin, H. (eds.),
Advances in Neural Information Processing Systems 33:
Annual Conference on Neural Information Processing
Systems 2020, NeurIPS 2020, December 6-12, 2020,
virtual, 2020. URL https://proceedings.
neurips.cc/paper/2020/hash/
1457c0d6bfcb4967418bfb8ac142f64a-Abstract.
html.

Chen, T., Moreau, T., Jiang, Z., Zheng, L., Yan, E., Shen,
H., Cowan, M., Wang, L., Hu, Y., Ceze, L., Guestrin, C.,
and Krishnamurthy, A. TVM: An automated end-to-end
optimizing compiler for deep learning. In 13th USENIX
Symposium on Operating Systems Design and Implemen-
tation (OSDI 18), pp. 578–594, Carlsbad, CA, October
2018a. USENIX Association. ISBN 978-1-939133-08-3.
URL https://www.usenix.org/conference/
osdi18/presentation/chen.

Chen, T., Zheng, L., Yan, E., Jiang, Z., Moreau, T., Ceze, L.,
Guestrin, C., and Krishnamurthy, A. Learning to optimize
tensor programs. In Proceedings of the 32nd International
Conference on Neural Information Processing Systems,
NIPS’18, pp. 3393–3404, Red Hook, NY, USA, 2018b.
Curran Associates Inc.

https://www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi
https://doi.org/10.1145/502874.502897
https://doi.org/10.1145/502874.502897
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://www.usenix.org/conference/osdi18/presentation/chen
https://www.usenix.org/conference/osdi18/presentation/chen

SIRIUS: Harvesting Whole-Program Optimization Opportunities for DNNs

Cowan, M., Moreau, T., Chen, T., Bornholt, J., and Ceze,
L. Automatic generation of high-performance quantized
machine learning kernels. In Proceedings of the 18th
ACM/IEEE International Symposium on Code Generation
and Optimization, pp. 305–316, 2020.

Darte, A. and Schreiber, R. A linear-time algorithm for
optimal barrier placement. In Proceedings of the tenth
ACM SIGPLAN symposium on Principles and Practice of
Parallel Programming, pp. 26–35, 2005.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. Bert:
Pre-training of deep bidirectional transformers for lan-
guage understanding. arXiv preprint arXiv:1810.04805,
2018.

Fu, C., Zhu, S., Chen, H., Koushanfar, F., Su, H., and Zhao,
J. Simbnn: A similarity-aware binarized neural network
acceleration framework. In 2019 IEEE 27th Annual In-
ternational Symposium on Field-Programmable Custom
Computing Machines (FCCM), pp. 319–319. IEEE, 2019.

Gao, M., Yang, X., Pu, J., Horowitz, M., and Kozyrakis, C.
Tangram: Optimized coarse-grained dataflow for scalable
nn accelerators. In Proceedings of the Twenty-Fourth In-
ternational Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, pp. 807–
820, 2019.

González-Alvarez, C., Sartor, J. B., Álvarez, C., Jiménez-
González, D., and Eeckhout, L. Mingle: an efficient
framework for domain acceleration using low-power spe-
cialized functional units. ACM Transactions on Architec-
ture and Code Optimization (TACO), 13(2):1–26, 2016.

Grosser, T., Groesslinger, A., and Lengauer, C. Polly -
performing polyhedral optimizations on a low-level inter-
mediate representation. Parallel Processing Letters, 22
(04), 2012.

Gupta, U., Hsia, S., Saraph, V., Wang, X., Reagen, B., Wei,
G.-Y., Lee, H.-H. S., Brooks, D., and Wu, C.-J. Deeprec-
sys: A system for optimizing end-to-end at-scale neural
recommendation inference. In 2020 ACM/IEEE 47th An-
nual International Symposium on Computer Architecture
(ISCA), pp. 982–995. IEEE, 2020.

Hagedorn, B., Elliott, A. S., Barthels, H., Bodik, R.,
and Grover, V. Fireiron: A data-movement-aware
scheduling language for gpus. In Proceedings of the
ACM International Conference on Parallel Architec-
tures and Compilation Techniques, PACT ’20, pp. 71–
82, New York, NY, USA, 2020. Association for Com-
puting Machinery. ISBN 9781450380751. doi: 10.
1145/3410463.3414632. URL https://doi.org/
10.1145/3410463.3414632.

Harris, M. et al. Optimizing parallel reduction in cuda.
Nvidia developer technology, 2(4):70, 2007.

Hartono, A., Baskaran, M. M., Bastoul, C., Cohen, A.,
Krishnamoorthy, S., Norris, B., Ramanujam, J., and
Sadayappan, P. Parametric multi-level tiling of imper-
fectly nested loops. In Proceedings of the 23rd In-
ternational Conference on Supercomputing, ICS ’09,
pp. 147–157, New York, NY, USA, 2009. Associa-
tion for Computing Machinery. ISBN 9781605584980.
doi: 10.1145/1542275.1542301. URL https://doi.
org/10.1145/1542275.1542301.

Hatcher, P. J. and Quinn, M. J. Data-parallel programming
on MIMD computers, volume 90. Mit Press, 1991.

Hemmat, M., Shah, T., Chen, Y., and San Miguel, J. Crania:
Unlocking data and value reuse in iterative neural network
architectures. In 2020 25th Asia and South Pacific Design
Automation Conference (ASP-DAC), pp. 295–300. IEEE,
2020.

Hochreiter, S. and Schmidhuber, J. Long short-term mem-
ory. Neural Comput., 9(8):1735–1780, November 1997.
ISSN 0899-7667. doi: 10.1162/neco.1997.9.8.1735.
URL https://doi.org/10.1162/neco.1997.
9.8.1735.

Jia, W., Wang, H., Chen, M., Lu, D., Lin, L., Car, R.,
Weinan, E., and Zhang, L. Pushing the limit of molecular
dynamics with ab initio accuracy to 100 million atoms
with machine learning. In SC20: International conference
for high performance computing, networking, storage and
analysis, pp. 1–14. IEEE, 2020.

Jia, Z., Padon, O., Thomas, J., Warszawski, T., Zaharia,
M., and Aiken, A. Taso: Optimizing deep learning
computation with automatic generation of graph substi-
tutions. In Proceedings of the 27th ACM Symposium
on Operating Systems Principles, SOSP ’19, pp. 47–
62, New York, NY, USA, 2019a. Association for Com-
puting Machinery. ISBN 9781450368735. doi: 10.
1145/3341301.3359630. URL https://doi.org/
10.1145/3341301.3359630.

Jia, Z., Tillman, B., Maggioni, M., and Scarpazza, D. P.
Dissecting the graphcore ipu architecture via microbench-
marking, 2019b.

Jouppi, N. P., Young, C., Patil, N., Patterson, D., Agrawal,
G., Bajwa, R., Bates, S., Bhatia, S., Boden, N., Borchers,
A., Boyle, R., Cantin, P.-l., Chao, C., Clark, C., Coriell, J.,
Daley, M., Dau, M., Dean, J., Gelb, B., Ghaemmaghami,
T. V., Gottipati, R., Gulland, W., Hagmann, R., Ho, C. R.,
Hogberg, D., Hu, J., Hundt, R., Hurt, D., Ibarz, J., Jaf-
fey, A., Jaworski, A., Kaplan, A., Khaitan, H., Killebrew,
D., Koch, A., Kumar, N., Lacy, S., Laudon, J., Law,

https://doi.org/10.1145/3410463.3414632
https://doi.org/10.1145/3410463.3414632
https://doi.org/10.1145/1542275.1542301
https://doi.org/10.1145/1542275.1542301
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1145/3341301.3359630
https://doi.org/10.1145/3341301.3359630

SIRIUS: Harvesting Whole-Program Optimization Opportunities for DNNs

J., Le, D., Leary, C., Liu, Z., Lucke, K., Lundin, A.,
MacKean, G., Maggiore, A., Mahony, M., Miller, K., Na-
garajan, R., Narayanaswami, R., Ni, R., Nix, K., Norrie,
T., Omernick, M., Penukonda, N., Phelps, A., Ross, J.,
Ross, M., Salek, A., Samadiani, E., Severn, C., Sizikov,
G., Snelham, M., Souter, J., Steinberg, D., Swing, A.,
Tan, M., Thorson, G., Tian, B., Toma, H., Tuttle, E.,
Vasudevan, V., Walter, R., Wang, W., Wilcox, E., and
Yoon, D. H. In-datacenter performance analysis of a
tensor processing unit. In Proceedings of the 44th An-
nual International Symposium on Computer Architecture,
ISCA ’17, pp. 1–12, New York, NY, USA, 2017. Associ-
ation for Computing Machinery. ISBN 9781450348928.
doi: 10.1145/3079856.3080246. URL https://doi.
org/10.1145/3079856.3080246.

Judd, P., Albericio, J., Hetherington, T., Aamodt, T. M.,
Jerger, N. E., and Moshovos, A. Proteus: Exploiting
numerical precision variability in deep neural networks.
In Proceedings of the 2016 International Conference on
Supercomputing, pp. 1–12, 2016.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. Imagenet
classification with deep convolutional neural networks.
Commun. ACM, 60(6):84–90, May 2017. ISSN 0001-
0782. doi: 10.1145/3065386. URL https://doi.
org/10.1145/3065386.

Kwon, H., Chatarasi, P., Pellauer, M., Parashar, A., Sarkar,
V., and Krishna, T. Understanding reuse, performance,
and hardware cost of dnn dataflow: A data-centric ap-
proach. In Proceedings of the 52nd Annual IEEE/ACM
International Symposium on Microarchitecture, pp. 754–
768, 2019.

Lattner, C. and Adve, V. Llvm: A compilation framework
for lifelong program analysis & transformation. In Inter-
national Symposium on Code Generation and Optimiza-
tion, 2004. CGO 2004., pp. 75–86. IEEE, 2004.

Lattner, C., Lenharth, A., and Adve, V. Making context-
sensitive points-to analysis with heap cloning practi-
cal for the real world. In Proceedings of the 28th
ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI ’07, pp. 278–289,
New York, NY, USA, 2007. Association for Comput-
ing Machinery. ISBN 9781595936332. doi: 10.
1145/1250734.1250766. URL https://doi.org/
10.1145/1250734.1250766.

Leary, C. and Wang, T. XLA: Tensorflow, compiled. Tesor-
Flow Dev Summit, 2017.

Liao, H., Tu, J., Xia, J., and Zhou, X. Davinci: A scalable
architecture for neural network computing. In 2019 IEEE
Hot Chips 31 Symposium (HCS), pp. 1–44, 2019. doi:
10.1109/HOTCHIPS.2019.8875654.

Liu, A., Bernstein, G. L., Chlipala, A., and Ragan-Kelley,
J. Verified tensor-program optimization via high-level
scheduling rewrites. Proceedings of the ACM on Pro-
gramming Languages, 6(POPL):1–28, 2022.

Ma, L., Xie, Z., Yang, Z., Xue, J., Miao, Y., Cui, W., Hu,
W., Yang, F., Zhang, L., and Zhou, L. Rammer: En-
abling holistic deep learning compiler optimizations with
rtasks. In 14th USENIX Symposium on Operating Sys-
tems Design and Implementation (OSDI 20), pp. 881–
897. USENIX Association, November 2020. ISBN 978-
1-939133-19-9. URL https://www.usenix.org/
conference/osdi20/presentation/ma.

Mullapudi, R. T., Vasista, V., and Bondhugula, U. Poly-
mage: Automatic optimization for image processing
pipelines. In Proceedings of the Twentieth Interna-
tional Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, ASPLOS
’15, pp. 429–443, New York, NY, USA, 2015. Associa-
tion for Computing Machinery. ISBN 9781450328357.
doi: 10.1145/2694344.2694364. URL https://doi.
org/10.1145/2694344.2694364.

Ning, L., Guan, H., and Shen, X. Adaptive deep reuse:
Accelerating cnn training on the fly. In 2019 IEEE 35th
International Conference on Data Engineering (ICDE),
pp. 1538–1549. IEEE, 2019.

Niu, W., Guan, J., Wang, Y., Agrawal, G., and Ren, B.
Dnnfusion: Accelerating deep neural networks execution
with advanced operator fusion. In Proceedings of the
42nd ACM SIGPLAN International Conference on Pro-
gramming Language Design and Implementation, PLDI
2021, pp. 883–898, New York, NY, USA, 2021. Associa-
tion for Computing Machinery. ISBN 9781450383912.
doi: 10.1145/3453483.3454083. URL https://doi.
org/10.1145/3453483.3454083.

NVIDIA Corporation. Tensorrt. https://developer.
nvidia.com/tensorrt, a.

NVIDIA Corporation. Basic linear algebra on nvidia gpus.
https://developer.nvidia.com/cublas, b.

NVIDIA Corporation. Nvidia tesla v100 gpu archi-
tecture. https://www.nvidia.com/en-us/
data-center/volta-gpu-architecture/,
2017.

NVIDIA Corporation. Cuda toolkit — nvidia de-
veloper. https://developer.nvidia.com/
cuda-toolkit, 2021.

O’Boyle, M. and Stohr, E. Compile time barrier synchro-
nization minimization. IEEE Transactions on Parallel
and Distributed Systems, 13(6):529–543, 2002.

https://doi.org/10.1145/3079856.3080246
https://doi.org/10.1145/3079856.3080246
https://doi.org/10.1145/3065386
https://doi.org/10.1145/3065386
https://doi.org/10.1145/1250734.1250766
https://doi.org/10.1145/1250734.1250766
https://www.usenix.org/conference/osdi20/presentation/ma
https://www.usenix.org/conference/osdi20/presentation/ma
https://doi.org/10.1145/2694344.2694364
https://doi.org/10.1145/2694344.2694364
https://doi.org/10.1145/3453483.3454083
https://doi.org/10.1145/3453483.3454083
https://developer.nvidia.com/tensorrt
https://developer.nvidia.com/tensorrt
https://developer.nvidia.com/cublas
https://www.nvidia.com/en-us/data-center/volta-gpu-architecture/
https://www.nvidia.com/en-us/data-center/volta-gpu-architecture/
https://developer.nvidia.com/cuda-toolkit
https://developer.nvidia.com/cuda-toolkit

SIRIUS: Harvesting Whole-Program Optimization Opportunities for DNNs

Oh, Y. H., Kim, S., Jin, Y., Son, S., Bae, J., Lee, J., Park, Y.,
Kim, D. U., Ham, T. J., and Lee, J. W. Layerweaver: Max-
imizing resource utilization of neural processing units
via layer-wise scheduling. In 2021 IEEE International
Symposium on High-Performance Computer Architecture
(HPCA), pp. 584–597. IEEE, 2021.

Pearce, D. J., Kelly, P. H., and Hankin, C. Efficient field-
sensitive pointer analysis of c. ACM Transactions on
Programming Languages and Systems (TOPLAS), 30(1):
4–es, 2007.

PipLib. Pip: The parametric integer programming library.
http://www.piplib.org.

Pradelle, B., Meister, B., Baskaran, M., Springer, J., and
Lethin, R. Polyhedral optimization of tensorflow com-
putation graphs. In Bhatele, A., Boehme, D., Levine,
J. A., Malony, A. D., and Schulz, M. (eds.), Program-
ming and Performance Visualization Tools, pp. 74–89,
Cham, 2019. Springer International Publishing. ISBN
978-3-030-17872-7.

Qin, E., Samajdar, A., Kwon, H., Nadella, V., Srinivasan, S.,
Das, D., Kaul, B., and Krishna, T. Sigma: A sparse and
irregular gemm accelerator with flexible interconnects for
dnn training. In 2020 IEEE International Symposium on
High Performance Computer Architecture (HPCA), pp.
58–70. IEEE, 2020.

Ragan-Kelley, J., Barnes, C., Adams, A., Paris, S., Du-
rand, F., and Amarasinghe, S. Halide: A language
and compiler for optimizing parallelism, locality, and
recomputation in image processing pipelines. In Pro-
ceedings of the 34th ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, PLDI
’13, pp. 519–530, New York, NY, USA, 2013. Associa-
tion for Computing Machinery. ISBN 9781450320146.
doi: 10.1145/2491956.2462176. URL https://doi.
org/10.1145/2491956.2462176.

Rocki, K., Van Essendelft, D., Sharapov, I., Schreiber, R.,
Morrison, M., Kibardin, V., Portnoy, A., Dietiker, J. F.,
Syamlal, M., and James, M. Fast stencil-code computa-
tion on a wafer-scale processor. In SC20: International
Conference for High Performance Computing, Network-
ing, Storage and Analysis, pp. 1–14. IEEE, 2020.

Sutskever, I., Vinyals, O., and Le, Q. V. Sequence to se-
quence learning with neural networks. In Proceedings of
the 27th International Conference on Neural Information
Processing Systems - Volume 2, NIPS’14, pp. 3104–3112,
Cambridge, MA, USA, 2014. MIT Press.

Truong, L., Barik, R., Totoni, E., Liu, H., Markley, C., Fox,
A., and Shpeisman, T. Latte: A language, compiler, and
runtime for elegant and efficient deep neural networks.

In Proceedings of the 37th ACM SIGPLAN Conference
on Programming Language Design and Implementation,
PLDI ’16, pp. 209–223, New York, NY, USA, 2016. Asso-
ciation for Computing Machinery. ISBN 9781450342612.
doi: 10.1145/2908080.2908105. URL https://doi.
org/10.1145/2908080.2908105.

Tseng, C.-W. Compiler optimizations for eliminating barrier
synchronization. ACM SIGPLAN Notices, 30(8):144–155,
1995.

Turner, J., Crowley, E. J., and O’Boyle, M. F. Neural archi-
tecture search as program transformation exploration. In
Proceedings of the 26th ACM International Conference
on Architectural Support for Programming Languages
and Operating Systems, pp. 915–927, 2021.

Vasilache, N., Bastoul, C., and Cohen, A. Polyhedral code
generation in the real world. In Mycroft, A. and Zeller,
A. (eds.), Compiler Construction, pp. 185–201, Berlin,
Heidelberg, 2006. Springer Berlin Heidelberg. ISBN
978-3-540-33051-6.

Vasilache, N., Zinenko, O., Theodoridis, T., Goyal, P., De-
vito, Z., Moses, W. S., Verdoolaege, S., Adams, A., and
Cohen, A. The next 700 accelerated layers: From math-
ematical expressions of network computation graphs to
accelerated gpu kernels, automatically. ACM Trans. Ar-
chit. Code Optim., 16(4), October 2019. ISSN 1544-3566.
doi: 10.1145/3355606. URL https://doi.org/10.
1145/3355606.

Verdoolaege, S., Janssens, G., and Leuven, K. Scheduling
for ppcg. In CW ReportsCW Reports, 2017.

Wahib, M. and Maruyama, N. Scalable kernel fusion for
memory-bound gpu applications. In SC ’14: Proceedings
of the International Conference for High Performance
Computing, Networking, Storage and Analysis, pp. 191–
202, 2014. doi: 10.1109/SC.2014.21.

Wang, S., Yang, P., Zheng, Y., Li, X., and Pekhimenko, G.
Horizontally fused training array: An effective hardware
utilization squeezer for training novel deep learning mod-
els. Proceedings of Machine Learning and Systems, 3:
599–623, 2021.

Whaley, J. and Lam, M. S. Cloning-based context-sensitive
pointer alias analysis using binary decision diagrams. In
Proceedings of the ACM SIGPLAN 2004 conference on
Programming Language Design and Implementation, pp.
131–144, 2004.

Xiao, S. and Feng, W.-c. Inter-block gpu communication
via fast barrier synchronization. In 2010 IEEE Interna-
tional Symposium on Parallel & Distributed Processing
(IPDPS), pp. 1–12. IEEE, 2010.

http://www.piplib.org
https://doi.org/10.1145/2491956.2462176
https://doi.org/10.1145/2491956.2462176
https://doi.org/10.1145/2908080.2908105
https://doi.org/10.1145/2908080.2908105
https://doi.org/10.1145/3355606
https://doi.org/10.1145/3355606

SIRIUS: Harvesting Whole-Program Optimization Opportunities for DNNs

Xie, S., Girshick, R., Dollár, P., Tu, Z., and He, K. Aggre-
gated residual transformations for deep neural networks,
2017.

Zhang, Q., Han, Z., Yang, F., Zhang, Y., Liu, Z.,
Yang, M., and Zhou, L. Retiarii: A deep learning
Exploratory-Training framework. In 14th USENIX
Symposium on Operating Systems Design and Imple-
mentation (OSDI 20), pp. 919–936. USENIX Asso-
ciation, November 2020. ISBN 978-1-939133-19-9.
URL https://www.usenix.org/conference/
osdi20/presentation/zhang-quanlu.

Zhao, J. and Di, P. Optimizing the memory hierarchy by
compositing automatic transformations on computations
and data. In 2020 53rd Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), pp. 427–441,
2020. doi: 10.1109/MICRO50266.2020.00044.

Zhao, J., Li, B., Nie, W., Geng, Z., Zhang, R., Gao, X.,
Cheng, B., Wu, C., Cheng, Y., Li, Z., Di, P., Zhang,
K., and Jin, X. Akg: Automatic kernel generation
for neural processing units using polyhedral transfor-
mations. In Proceedings of the 42nd ACM SIGPLAN
International Conference on Programming Language De-
sign and Implementation, PLDI 2021, pp. 1233–1248,
New York, NY, USA, 2021. Association for Comput-
ing Machinery. ISBN 9781450383912. doi: 10.1145/
3453483.3454106. URL https://doi.org/10.
1145/3453483.3454106.

Zhao, J., Gao, X., Xia, R., Zhang, Z., Chen, D., Chen, L.,
Zhang, R., Geng, Z., Cheng, B., and Jin, X. Apollo:
Automatic partition-based operator fusion through layer
by layer optimization. mlsys 2022. In MLSys, 2022.

Zhao, Y., Du, Z., Guo, Q., Liu, S., Li, L., Xu, Z.,
Chen, T., and Chen, Y. Cambricon-f: Machine learn-
ing computers with fractal von neumann architecture.
In Proceedings of the 46th International Symposium
on Computer Architecture, ISCA ’19, pp. 788–801,
New York, NY, USA, 2019a. Association for Com-
puting Machinery. ISBN 9781450366694. doi: 10.
1145/3307650.3322226. URL https://doi.org/
10.1145/3307650.3322226.

Zhao, Z., Kwon, H., Kuhar, S., Sheng, W., Mao, Z., and
Krishna, T. mrna: Enabling efficient mapping space
exploration for a reconfiguration neural accelerator. In
2019 IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS), pp. 282–292.
IEEE, 2019b.

Zheng, B., Vijaykumar, N., and Pekhimenko, G. Echo:
Compiler-based gpu memory footprint reduction for lstm
rnn training. In Proceedings of the ACM/IEEE 47th An-
nual International Symposium on Computer Architecture,

ISCA ’20, pp. 1089–1102. IEEE Press, 2020a. ISBN
9781728146614. doi: 10.1109/ISCA45697.2020.00092.
URL https://doi.org/10.1109/ISCA45697.
2020.00092.

Zheng, L., Jia, C., Sun, M., Wu, Z., Yu, C. H., Haj-
Ali, A., Wang, Y., Yang, J., Zhuo, D., Sen, K., Gon-
zalez, J. E., and Stoica, I. Ansor: Generating high-
performance tensor programs for deep learning. In 14th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI 20), pp. 863–879. USENIX As-
sociation, November 2020b. ISBN 978-1-939133-19-9.
URL https://www.usenix.org/conference/
osdi20/presentation/zheng.

Zheng, S., Liang, Y., Wang, S., Chen, R., and Sheng, K.
Flextensor: An automatic schedule exploration and op-
timization framework for tensor computation on hetero-
geneous system. In Proceedings of the Twenty-Fifth In-
ternational Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, ASPLOS
’20, pp. 859–873, New York, NY, USA, 2020c. Associa-
tion for Computing Machinery. ISBN 9781450371025.
doi: 10.1145/3373376.3378508. URL https://doi.
org/10.1145/3373376.3378508.

Zheng, Z., Yang, X., Zhao, P., Long, G., Zhu, K., Zhu, F.,
Zhao, W., Liu, X., Yang, J., Zhai, J., et al. Astitch: en-
abling a new multi-dimensional optimization space for
memory-intensive ml training and inference on modern
simt architectures. In Proceedings of the 27th ACM In-
ternational Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, pp. 359–
373, 2022.

Zhu, H., Wu, R., Diao, Y., Ke, S., Li, H., Zhang, C., Xue,
J., Ma, L., Xia, Y., Cui, W., et al. {ROLLER}: Fast and
efficient tensor compilation for deep learning. In 16th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI 22), pp. 233–248, 2022.

Zinenko, O., Verdoolaege, S., Reddy, C., Shirako, J.,
Grosser, T., Sarkar, V., and Cohen, A. Unified polyhedral
modeling of temporal and spatial locality. In Research
Report RR-9110, Inria Paris, 2017.

Zoph, B., Vasudevan, V., Shlens, J., and Le, Q. V. Learning
transferable architectures for scalable image recognition.
In 2018 IEEE Conference on Computer Vision and Pat-
tern Recognition, CVPR 2018, Salt Lake City, UT, USA,
June 18-22, 2018, pp. 8697–8710. IEEE Computer Soci-
ety, 2018. doi: 10.1109/CVPR.2018.00907. URL http:
//openaccess.thecvf.com/content_cvpr_
2018/html/Zoph_Learning_Transferable_
Architectures_CVPR_2018_paper.html.

https://www.usenix.org/conference/osdi20/presentation/zhang-quanlu
https://www.usenix.org/conference/osdi20/presentation/zhang-quanlu
https://doi.org/10.1145/3453483.3454106
https://doi.org/10.1145/3453483.3454106
https://doi.org/10.1145/3307650.3322226
https://doi.org/10.1145/3307650.3322226
https://doi.org/10.1109/ISCA45697.2020.00092
https://doi.org/10.1109/ISCA45697.2020.00092
https://www.usenix.org/conference/osdi20/presentation/zheng
https://www.usenix.org/conference/osdi20/presentation/zheng
https://doi.org/10.1145/3373376.3378508
https://doi.org/10.1145/3373376.3378508
http://openaccess.thecvf.com/content_cvpr_2018/html/Zoph_Learning_Transferable_Architectures_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Zoph_Learning_Transferable_Architectures_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Zoph_Learning_Transferable_Architectures_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Zoph_Learning_Transferable_Architectures_CVPR_2018_paper.html

SIRIUS: Harvesting Whole-Program Optimization Opportunities for DNNs

A ARTIFACT APPENDIX

A.1 Abstract

The artifact contains the necessary software components to
validate the main results in this paper. We provide a docker
image to ease the environment setup. The docker image
contains the source code of Sirius, scripts to evaluate the
inference performance, and scripts to draw the figures. It
requires a Linux system with NVIDIA driver (capable to run
CUDA 11.8) running on a NVIDIA A100 Tensor Core GPU
equipped x86 64 machine to create the docker container.
After launching the docker container, you can run scripts to
collect performance numbers and draw pictures.

A.2 Artifact check-list (meta-information)
• Model: ResNext, NANet, DeepSpeech2, LSTM, Seq2Seq

and

BERT(included in docker image)

• Run-time environment: A Linux system with NVIDIA
driver(capable to run CUDA 11.8)

• Hardware: NVIDIA A100 Tensor Core GPU

• Metrics: End-to-end inference time

• Output: Key graphs and necessary data

• Experiments: See read-me file in docker image.

• How much disk space required (approximately)?: 60GB

• How much time is needed to prepare workflow (approxi-
mately)?: 20 minutes

• How much time is needed to complete experiments (ap-
proximately)?: It requires dozens of minutes to download
the docker image. You can then run a script once to col-
lect all performance results and draw pictures. It requires
about 2 hours in total.

• Publicly available?: Yes. The docker image is public,
which contains the source code.

• Code licenses (if publicly available)?: The GNU General
Public License (GPL)

• Workflow framework used?: LLVM

• Archived (provide DOI)?:
https://zenodo.org/record/7885573

A.3 Description

A.3.1 How to access

We provide the docker image at both dockerhub and zenodo.

Docker-hub URL: https://hub.docker.com/r/sunqianqi/sirius

Zenodo URL: https://zenodo.org/record/7885573

A.3.2 Hardware dependencies

NVIDIA A100 Tensor Core GPU equipped x86 64 ma-
chines.

A.3.3 Software dependencies

• Linux system with NVIDIA driver capable to run
CUDA 11.8

• Docker version 20.10.14

A.3.4 Models

Required Models have been included in the docker, do not
need extra work. Models include ResNext, NANet, Deep-
Speech2, LSTM, Seq2Seq and BERT.

A.4 Installation

You just need to pull the docker image and launch a con-
tainer:

$ docker pull sunqianqi/sirius:mlsys_ae
$ docker run -it --name=sirius_test \
--gpus all --privileged \
sunqianqi/sirius:mlsys_ae /bin/bash

Use sudo to run docker if necessary.

A.5 Experiment workflow

A.6 Evaluation and expected results

We have provided a README file
(/root/mlsys ae/README.md) on how to reproduce the
results within our provided docker image.

You can reproduce experiment results in SIRIUS paper fol-
lowing the steps in README.md.

https://hub.docker.com/r/sunqianqi/sirius
https://zenodo.org/record/7885573

